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Abstract 

One way to improve the value of citizen science data for a specific aim is through promoting adaptive sampling, where the marginal 
value of a citizen science observation is dependent on existing data collected to address a specific question. Adaptive sampling could 
increase sampling at places or times—using a dynamic and updateable framework—where data are expected to be most informative 
for a given ecological question or conservation goal. We used an experimental approach to test whether the participants in a popular 
Australian citizen science project—FrogID—would follow an adaptive sampling protocol aiming to maximize understanding of frog 
diversity. After a year, our results demonstrated that these citizen science participants were willing to adopt an adaptive sampling 
protocol, improving the sampling of biodiversity consistent with a specific aim. Such adaptive sampling can increase the value of 
citizen science data for biodiversity research and open up new avenues for citizen science project design. 
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ing ( e.g., prescribed sampling in space and time by mostly trained 
and experienced volunteers, usually but not always with meta- 
data and with site selection included in the design ) . Because of 
the ease with which volunteers can participate, unstructured data 
projects generally provide data at the largest spatial and temporal 
scales, with minimal metadata ( e.g., the date of observation and 
the location of the observation ) , but these data often contain the 
most bias, especially spatial bias ( Geldmann et al. 2016 ) . Although 
various statistical methods can account for noise and biases in cit- 
izen science data ( e.g., Bird et al. 2014 , Isaac et al. 2014 , Johnston 
et al. 2020 ) , the value of the data could be more directly improved 
by changing how it is collected. 

One way to improve biodiversity data is to guide citizen sci- 
ence sampling—that is, to add structure to the sampling process 
( Pocock et al. 2015 , Callaghan et al. 2019a , 2019b ) . For example, 
areas where no observations have been reported could be priori- 
tized for future sampling, filling in our understanding of biodiver- 
sity ( Fontaine et al. 2021 ) . In the present article, we call this adap- 
tive sampling ( sensu Zeng and Xiang 2017 , Takahashi et al. 2022 ) . 
The marginal value of a potentially new citizen science observa- 
tion ( i.e., the relative value of a given observation relevant to other 
possible observations ) is dependent on the temporal or spatial at- 
tributes of recent citizen science observations submitted to the 
platform and on the question ( i.e., statistical outcome ) of the pro- 
posed objective. Adaptive sampling can inform sampling at places 
or times where the data are expected to be most informative for a 
given question in ecology or conservation, where such questions 
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iodiversity data collected through citizen science, also referred
o as community science , are rapidly becoming the predominant
ource of biodiversity data across the world ( Chandler et al. 2017 ) ,
ccounting for at least 80% of all data available since 2010 ( www.
bif.org ; supplemental text S1 ) in the largest biodiversity aggre-
ator, the Global Biodiversity Information Facility. Global citizen
cience initiatives such as iNaturalist accumulate an average of
pproximately 80,000 species observations per day across the
orld ( www.inaturalist.org ; supplemental text S2 ) . Such data are
xpanding our understanding of biodiversity patterns in space
nd time and informing conservation policy and practice ( e.g.,
chuster et al. 2019 , Billaud et al. 2021, Forister et al. 2021 ,
irchoff et al. 2021 ) . But paradoxically, more data do not necessar-
ly mean increased knowledge about species’ distributions; new
bservations are often collected in already sampled places, cre-
ting redundancies underlying many sources of biodiversity data
 Boakes et al. 2010 , Courter et al. 2013 , Tiago et al. 2017 a ) . 
Citizen science initiatives vary in scope, design, and structure

 Haklay 2013 , Pocock et al. 2017 ) , influencing the extent of bi-
ses in the associated data ( Welvaert and Caley 2016 ) . Citizen sci-
nce initiatives fall along a continuum ( e.g., Pocock et al. 2015 ,
elvaert and Caley 2016 ) , ranging from unstructured recording

 e.g., in which little training is needed to participate and con-
ribute opportunistic or incidental observations and with which
ew metadata are associated ) to focused recording ( e.g., with min-
mal workflows and guidelines but increased metadata collected
ith each observation such as search effort ) to structured record-
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could include assessments of species temporal trends, spatial pat-
terns, or even community properties. Adaptive sampling in citizen
science projects is in its infancy, with multiple studies looking at
different optimal sampling designs given a particular goal or out-
come of a citizen science project ( e.g., Callaghan et al. 2019a , Kays
et al. 2021 ) . 

The success of an adaptive sampling scheme depends in part
on appealing to the motivations of the participants to change their
recording behavior. This notion is derived from the theory of be-
havioral nudging—the concept of influencing the motives and in-
centives of groups or individuals through positive reinforcement
or indirect suggestions ( Thaler and Sunstein 2008 ) . Such depen-
dence on understanding individuals’ motivations illustrates the
importance of understanding the different intrinsic and extrinsic
motivations of citizen science participants ( Pateman et al. 2021 )
and potential interactions ( West et al. 2021 ) . Participant motiva-
tions are complex, and in the present article, we define intrinsic
motivations as those through which the participants find an activ-
ity inherently interesting or satisfying and extrinsic motivations as
those through which the participants work to gain an instrumen-
tal or external goal or reward ( see West et al. 2021 ) . Just as the par-
ticular goals or outcomes of citizen science projects are diverse, so
too are the citizen science participants—diverse in terms of their
data contribution and motivations ( August et al. 2020 , Pateman
et al. 2021 , West et al. 2021 ) . Generally, volunteer participation
in citizen science programs ( An đelkovi ́c et al. 2022 ) is motivated
by an intrinsic willingness to contribute to conservation or envi-
ronmental concerns ( Tiago et al. 2017 b, Larson et al. 2020 , West
et al. 2021 ) , social or competitive features of a project ( Eveleigh
et al. 2014 , Pateman et al. 2021 ) , or personal reasons ( West et al.
2021 , An đelkovi ́c et al. 2022 ) . In this instance, a nudge could be
represented by conveying the information about the importance
of a given citizen science observation for research or conserva-
tion. For example, if the benefits of data collection for conserva-
tion purposes are clearly articulated, then the participants moti-
vated by conservation ( West et al. 2021 , Angello et al. 2022 ) may
be more likely to adopt sampling nudges. Alternatively, the par-
ticipants interested in bettering themselves ( i.e., participating to
learn something or further one’s career; West et al. 2021 ) may be
willing to adopt an adaptive sampling protocol if it helps that in-
dividual achieve that goal. 

In contrast, some citizen science participants are motivated
by competition ( Bowser et al. 2013 ) , sometimes in addition to
or complementing other intrinsic motivations. In this instance a
nudge—going beyond conveying the importance of a given ob-
servation for research—could include a gamified aspect expected
to result in uptake of an adaptive sampling protocol. Gamifica-
tion has proven successful across fields—for example, by increas-
ing health-related behavior, academic performance, and environ-
mental sustainability ( Morford et al. 2014 , Manzano-León et al.
2021 ) . Self-presentation, self-efficacy, social bonds, and playful-
ness may all serve as different motivations that lead to the suc-
cess of gamification in crowdsourcing ( Feng et al. 2018 ) and are
therefore important to fully understand the potential of gamifi-
cation to produce successful behavioral nudges. In citizen science
initiatives, previous work has shown the potential for success of
gamification ( e.g., Xue et al. 2016 ) , predominantly through the use
of leaderboards ( Wood et al. 2011 ) , used to encourage sampling
among the participants. But such leaderboards are generally fo-
cused on the number of species or the number of observations—
neither of which necessarily increases knowledge of biodiversity
or improves decision-making for conservation ( Bayraktarov et al.
2019 ) . This contrasts with a leaderboard that quantifies the col-
lective value of a participant’s observations. 
We are unaware of any formal quantification of the extent to 
which citizen science participants are willing to respond to an 
adaptive sampling scheme and whether behavioral nudges can 
be used to encourage different sampling of biodiversity. We used 
an experimental approach to test whether the participants in a 
popular Australian citizen science project—FrogID—would follow 

an adaptive sampling protocol aimed at maximizing the under- 
standing of frog diversity. We had three experimental groups: one 
presented with a dynamic map of optimal sampling locations 
updated biweekly that communicated to the participants where 
their data collection would be most valuable ( i.e., on the basis 
of the potential to add to our understanding of frog diversity ) ,
another presented with the same dynamic map of optimal sam- 
pling locations but with a leaderboard highlighting each partici- 
pant’s cumulative total of valuable observations in the region, and 
a third a priori control group who were not shown any maps. 

Using this experimental design, we tested the following hy- 
potheses. First, we hypothesized that behavioral nudges would 
have a positive impact on objectively better sampling of biodi- 
versity, as would be judged by the participants’ proportionally 
submitting higher priority samples. Second, we hypothesized that 
a leaderboard would have a further impact on higher priority sam- 
pling such that the participants in the leaderboard experimental 
group would submit proportionally higher priority samples. And 
third, we hypothesized that if the participants were adapting the 
behavioral nudges, then we would be able to detect this change 
in the difference in spatial bias of the samples. Our results 
have wide-reaching implications for the use of adaptive sam- 
pling in current and future biodiversity-related citizen science 
initiatives. 

An experimental approach 

FrogID citizen science project 
For our experiment, we used the FrogID citizen science platform.
FrogID ( Rowley et al. 2019 , Rowley and Callaghan 2020 ) is a citizen
science project led by the Australian Museum, in Sydney, Australia 
( see https://australian.museum ) , launched in November 2017 and 
aimed at gathering data on Australian frogs. The volunteers sub- 
mit 20–60 acoustic recordings of calling frogs, which are then sub- 
sequently identified by a team of experts at the Australian Mu- 
seum. The recordings are made via a smartphone app and are ge-
olocated to a single point, with associated accuracy estimation.
The data are in the form of presence-only observations. To date,
the FrogID project has more than 750,000 observations of frogs 
submitted by more than 30,000 participants. Each frog observa- 
tion in the data set is hereafter referred to as a sample . 

Experimental design 

We chose six study regions defined by local government ar- 
eas ( hereafter, study regions ) for our experimental design 
( supplemental figure S1 ) . The study regions were selected a 
priori on the basis of relatively equal-size areas, a reasonable 
number of active FrogID users, a diverse range of habitats, and 
the known level of frog diversity. The six study regions in our
project were assigned to one of three treatments such that there 
was no systematic bias among treatments in terms of these 
aforementioned characteristics ( see figure S1 ) : the dynamic 
map group ( Central Coast and Wollongong ) , the dynamic map 
and leaderboard group ( Hornsby and Blue Mountains ) , and the 
control group ( Wingecarribee and Lake Macquarie ) . All maps 
were presented via a website deployed using html and the 
react-leaflet application. The dynamic map group was presented 
with a map illustrating the area of the study region and how

https://australian.museum
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Figure 1. An example of the sampling priority map shown to the participants of the project, summarizing our workflow to qualitatively illustrate the 
sampling priority of the areas throughout the study regions. Users were shown an interactive version that could be zoomed in ( see supplemental 
videos S1 and S2 for a better overview of the website ) . 
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he associated priority ( see below ) varied throughout the study
egion ( e.g., figure 1 ) . The dynamic map and leaderboard group
as presented with the same map, calculated as in the dynamic
ap group, but they were also presented with a leaderboard.
he leaderboard ordered FrogID registered usernames on the
asis of the score of the observations from the dynamic maps.
he score was calculated by assigning a point value to each of
he five grid categories: low priority, 1; medium priority, 2; high
riority, 3; insufficient records, 4; and zero records, 5 ( see below
or details ) . And for every observation a user submitted in the
rid cell, there were up to a maximum of five observations on any
iven day. The values were then multiplied and added and were
rovided to the users via the website ( see supplemental videos S1
nd S2 ) . The control group represented two study regions, chosen
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a priori as controls to account for the increasing rise in FrogID
users and contributions ( Rowley et al. 2019 ) during the study
( i.e., distinguishing increased records on the basis of the natural
growth of the project and as a response to our study ) . 

Deriving a dynamic map of priority locations 
We chose estimating species richness as our scientific objective,
given its fundamental importance in understanding biodiversity
and prioritizing conservation efforts ( Yocoz et al. 2001 ) and the
potential to estimate species richness using citizen science data
( Callaghan et al. 2020 ) . We overlaid 0.05 by 0.05–degree grid cells
over each study region ( supplemental figure S2 ) , producing bi-
weekly dynamic maps throughout a year ( e.g., figure 1 ) . We chose
this spatial resolution on the basis of our ability to aggregate
FrogID observations into spatial units that could estimate species
richness ( i.e., we wanted to collate a minimum number of obser-
vations that is more likely at larger spatial scales ) . Also, this res-
olution was chosen because most FrogID users contribute data
within 1 kilometer of their home, but we wanted to test the ability
of adaptive sampling, requiring a spatial resolution larger than
approximately 1 kilometer. The grid cells were categorized into
sampling priority statuses ( a qualitative representation of the im-
portance of a sample from a given grid cell to aid our understand-
ing of frog diversity ) : zero records, insufficient records, high pri-
ority, medium priority, and low priority. Zero records was any grid
cell with no FrogID submissions. Insufficient records applied to grid
cells rarely sampled; we used a cutoff of 10 FrogID submissions,
because this was the minimum number producing reliable esti-
mates of species richness ( see supplemental figure S3 ) . A mini-
mum number was necessary for the statistical analysis to esti-
mate completeness of a grid cell ( see below for details ) ; for less
than 10 observations, it was more likely that only one species was
recorded, which would produce unreliable species richness esti-
mates. Different cutoffs ( for insufficient records ) could be used,
but we chose 10 FrogID submissions because too few grid cells
were classified to provide a robust estimate of species richness in
a grid cell. Regardless of how the insufficient records threshold is
defined, our results of differential sampling among high, medium,
and low priority cells would still be robust. Moreover, the reason
for few records in both cells classified as insufficient records and zero
records could be many, including a lack of frogs within that spe-
cific grid cell ( i.e., little frog habitat ) or inaccessible habitat ( i.e.,
predominantly private lands ) , which is why we separated these
categories from the others ( high, medium, and low priority cells ) .
To categorize a grid cell as high, medium, or low priority, we used
an estimate of completeness with respect to the observed and ex-
pected species richness in a grid cell. This was estimated using
the iNEXT package in R ( Chao et al. 2014 , Hsieh et al. 2016 ) , which
takes a sampling assemblage of abundance N with species rich-
ness i , and calculates a sample completeness curve with respect
to the sample size. This curve is an aggregate of the interpolated
and extrapolated species accumulation and the estimated asymp-
tote, along with a confidence interval, for species richness. Inputs
into the iNEXT function were generated by obtaining abundance
data ( i.e., presence-only counts of each species ) for each spatial
grid cell in a given area. First, we estimated species richness on the
basis of the recordings submitted in a grid and then divided the
observed species richness by the estimated species richness ( i.e.,
a grid where the species richness was well estimated would be
equal to 1 according to iNEXT ) . The inverse of these completeness
values ( i.e., incompleteness ) was used to assign sampling priority
status to a grid cell. For example, a grid cell with a completeness
value of 1 was classified as a low priority cell, because sampled
richness was already likely to be complete or close to complete 
( see supplemental figure S4 for an illustration ) . For values greater 
than 1, we categorized these grid cells—those with more than 10 
records—into high ( the top 33% ) , medium ( the middle 33% ) , and
low ( the bottom 33% ) priority by dividing the range of values into
three, for qualitative representation in our dynamic maps. For ex- 
ample, if the inverse completeness value was at least two-thirds 
of the maximum value of completeness values, then the grid cell 
was assigned high priority. 

Because the estimates of species richness change and sampling 
completeness changes with new observations, this procedure was 
updated biweekly, adding new validated records from the previous 
period. We refer to each 2-week period as a sampling period, and
our study therefore included a total of 26 sampling periods. Impor- 
tantly, in our framework, a grid cell was dependent on the other
grid cells in that study region, and consequently, a grid cell could
be low priority one time period but subsequently high priority. 

Recruitment of participants 
All of the participants who had submitted records from the four 
experimental study regions before the study began were initially 
invited to join the project. The participants were emailed and 
told of our pilot study to encourage better sampling of frogs 
( supplemental figure S5 ) . A FrogID user could receive more than 
one recruitment email if they submitted an observation in more 
than one of the experimental study regions. The users were given 
the option to opt out of email communication. However, because 
participants could join the FrogID project throughout the entirety 
of our study, we reanalyzed the user data to identify any potential
new FrogID participants contacted during the next update email 
( e.g., supplemental figure S6 ) . In total, we emailed the participants
four times: at the start of the project, 3 months after the start,
6 months after the start, and 9 months after the start. After the
first email, we quantified the number of website hits to track the
usefulness of sending the recruitment emails, which produced 
significant spikes in website visits when these emails were sent 
( supplemental figure S7 ) . 

Statistical analysis 
For statistical analyses, the control group was treated as the com- 
parison, representing an approximation of overall change without 
dynamic maps presented to the FrogID users. To empirically com- 
pare the relative efforts made toward incomplete cells between 
control ( Wingecarribee and Lake Macquarie ) and experimental 
groups ( Central Coast, Blue Mountains, Wollongong, Hornsby ) , the 
number of samples per cell for each priority status was calculated 
for each study region. Rather than comparing the raw numbers of 
samples, we standardized for the spatial area of each sampling 
priority status. To obtain the number of samples per square, the 
ratio of the total number of submitted samples and the total num-
ber of cells generated across all sampling periods was calculated 
for each respective sampling priority status. This process was re- 
peated across each of the 26 sampling periods of the experiment.
For example, in the Blue Mountains study region, there were 28 
spatial grid cells classified as high priority sampling status, with a 
total of 451 frog records submitted within those grid cells. This led
to 16.1 samples per cell in the areas classified with a high priority
sampling status. 

To statistically test for an effect of experimental treatments,
we asked two questions addressing our first two hypotheses 
from the introduction: Was there a difference between the 
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xperimental groups ( i.e., all four experimental study regions pre-
ented with a dynamic map ) and the control group ( i.e., the two
ontrol study regions ) ? And was there a difference between the
wo experimental groups with and without a leaderboard? We
sed a generalized linear mixed effects model with a Poisson error
istribution, where our response variable was the number of sam-
les with sampling priority status as a predictor variable, as well
s an interaction term for sampling priority status by experimen-
al group. We used a random effect for study region to account for
otential differences among study regions, with an offset term for
he number of cells ( log-transformed ) in each sampling priority
tatus to account for differences in sampling areas. We defined
he Wald contrasts of the model so that the interaction regres-
ion coefficients and their associated p -values would test the two
uestions defined above. 
We further tested for effects of our dynamic maps by assess-

ng spatial bias in sampling, comparing whether the observed bias
atched the expected bias if the participants followed the advice
f our dynamic maps. This analysis corresponded to our hypothe-
is that we would be able to detect the effect of behavioral nudges
n the spatial bias of the sampling. We compared the spatial bias
f FrogID samples across the experimental period ( October 2020–
ctober 2021 ) with the period of the prior year ( October 2019–
ctober 2020 ) . A simple measure of spatial bias in sampling ( e.g.,
patial bias before and spatial bias after ) was not informative, be-
ause some bias in sampling locations was anticipated because
pecies richness is heterogeneous. Therefore, we generated a null
odel of what spatial bias would look like if people followed the
ynamic maps we provided. This was generated by distributing n
andom samples on the basis of the proportion of cells of each
riority status. For example, if 10 samples were made within the
patial map consisting of five low priority cells, three medium pri-
rity cells, and two low priority cells, then the null model was gen-
rated by randomly sampling 50% of the samples within low pri-
rity areas, 30% within medium priority areas, and 20% in high
riority areas. To account for the differing numbers of samples
etween experimental and control periods, two equilibrium mod-
ls were created. The spatial bias was determined by calculating
he average mean squared distances of all point locations in the
et of FrogID records, and the average mean squared distances of
ll point locations in the set of model random samples ( i.e., the
ull model ) . This process was repeated for all 26 sampling peri-
ds, to produce distributions of delta average mean squared dis-
ances, separated by the experimental and control time frames
pecified. This was further processed for all six chosen study re-
ions involved in the study. For our control groups, we generated
ynamic priority maps, although we note that no dynamic maps
ere presented to the observers in these study regions; we used
hese as our null model of spatial sampling. To statistically test
his, we followed the procedure described above but used a lin-
ar mixed effects model with a Gaussian error distribution, where
ur response variable was the delta mean squared distance with
he period ( before or after the experiment ) as a predictor vari-
ble, as well as an interaction term for the period ( before or af-
er the experiment ) and the experimental group. We used a ran-
om effect for study region to account for potential differences
mong study regions. Similarly, we defined the Wald contrasts of
he model so that the interaction regression coefficients and their
ssociated p -values would test the two questions defined above. 

ata accessibility 

ot all of the raw FrogID data can be made fully available because
he data contain identifiable information for the FrogID users.
owever, the processed and summarized data used to reproduce
he figures and analyses are available in a Zenodo repository here:
ttps://doi.org/10.5281/zenodo.7589542 . 

indings 

cross our four experimental study regions ( Central Coast and
ollongong were the dynamic map treatment, and Hornsby
nd Blue Mountains were the dynamic map and leaderboard
reatment ) , a total of 38,732 recordings were submitted during our
-year study period from 1710 FrogID users ( supplemental figure
8 ) . The Central Coast had the most submissions ( n = 21,780 ) , fol-
owed by the Blue Mountains ( n = 7466 ) , Wollongong ( n = 5484 ) ,
nd Hornsby ( n = 3912 ) . These submissions corresponded to 38,
1, 21, and 15 frog species, respectively, within each study region.
n contrast, our control study regions had 3131 submissions from
ake Macquarie, corresponding to 29 frog species and 2171 sub-
issions from Wingecarribee corresponding to 21 frog species. 
We found empirical differences in the sampling patterns be-

ween our experimental groups ( i.e., those study regions pre-
ented with a dynamic map ) and our control groups ( i.e., those
tudy regions not presented with a dynamic map ) on the sam-
ling priority status ( figure 2 ) . Relative to the available area in a
tudy region, the low priority cells in the control study regions
ccounted for 36% ( Lake Macquarie ) and 61% ( Wingecarribee ) of
he sampling, whereas for our study regions presented with a dy-
amic map low priority cells accounted for only 12% ( Wollongong )
nd 23% ( Central Coast ) of the sampling, and for study regions
resented with a dynamic map and a leaderboard, low priority
ells accounted for only 15% ( Blue Mountains ) and 22% ( Hornsby )
f the sampling. Furthermore, the high priority cells in the con-
rol study regions accounted for 32% ( Lake Macquarie ) and 15%
 Wingecarribee ) of the sampling, whereas for our study regions
resented with a dynamic map, high priority cells accounted for
8% ( Wollongong ) and 8% ( Central Coast ) of the sampling, and for
he study regions presented with a dynamic map and a leader-
oard, high priority cells accounted for 73% ( Hornsby ) and 67%
 Blue Mountains ) of the sampling. 
We found a statistically significant difference between the sam-

ling of priority status cells in the experimental regions ( i.e., the
ynamic map or the dynamic map and leaderboard study regions
ombined ) and the control study regions. This statistical effect
as strongest for high priority cells, followed by medium prior-

ty and low priority cells ( figure 3 ) . In contrast, there were no sta-
istically significant differences in sampling cells with insufficient
ecords ( n = 220 total cells across the study period ) or zero records
 n = 74 total cells across the study period ) . Therefore, our experi-
ent increased sampling in high priority areas but not at the cost
f other areas; we found an effect of increased sampling in high,
edium, and low priority areas. Also, we found differences be-

ween our different experimental groups, but the effects were not
onsistent. The study regions presented with a leaderboard had
 statistically significant effect of more sampling in high priority
ells, but the converse was true for medium priority cells. And
e found no statistically significant difference between our two
xperimental study regions for low priority status sampling or in-
ufficient records status, but there was more sampling for zero
ecords status for the group with a leaderboard, albeit this was a
elatively small number of total samples during the experiment. 
In further support of the ability to shift citizen science sam-

ling through an adaptive sampling scheme, we found that the
atterns in spatial bias more closely matched the guidance from
he dynamic maps for the experimental study regions than for
he control study regions ( figure 4, supplemental figure S9 ) . These

https://doi.org/10.5281/zenodo.7589542
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Figure 2. The relative sampling throughout the study period, represented by the percentage of samples standardized by the area of priority status, 
stratified by study region. Lake Macquarie and Wingecarribee were control study regions, whereas the participants in Central Coast and Wollongong 
were presented with a dynamic map and those in Hornsby and Blue Mountains were presented with a dynamic map and a leaderboard. 
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patterns were most striking for the two study regions presented
with a dynamic map where the spatial bias compared with the
null was less after the experiment compared with before the ex-
periment. For the control study regions, the opposite pattern was
found. For the two study regions with a dynamic map and a leader-
board, the spatial bias and the null both before and after the ex-
periment were comparable. 

The potential of behavioral nudges for 
future citizen science sampling 

Using experimental evidence, we demonstrated for the first time
that citizen science participants are willing to adopt new data col-
lection strategies that improve sampling of biodiversity, consis-
tent with a specific aim. The participants in the FrogID project in
Australia followed behavioral nudges, presented through the use
of dynamic maps, which led to an increase in sampling of high
priority and medium priority cells when compared with study re-
gions in which the participants were not presented with dynamic
maps ( figures 2 and 3 ) . Our study highlights the considerable po-
tential to add structure in unstructured citizen science initiatives,
by promoting an adaptive sampling protocol focused on a specific 
aim. Such adaptive sampling can increase the value of citizen sci-
ence data for biodiversity research and open up new avenues for 
citizen science project design. 

Our results contribute to the growing body of literature high- 
lighting the potential of citizen science participants to increase 
the value of their sampling ( Xue et al. 2016 , Tiago et al. 2017 b,
Kays et al. 2021 ) . For example, eBird participants were incentivized
to sample undersampled areas in a game called avicaching ( Xue 
et al. 2016 ) . Similarly, Kays and colleagues ( 2021 ) used a “plan, en-
courage, supplement” approach, to improve spatial coverage of 
camera traps in North Carolina. However, our approach differed 
because sampling priority was informed by a statistical outcome 
( i.e., species richness estimation ) , used to inform citizen science 
participants. A similar project in the United Kingdom called DE- 
CIDE ( https://decide.ceh.ac.uk ) encourages sampling aimed at im- 
proving species distribution models. These results of the poten- 
tial of behavioral change conform to other studies of behavioral 
change in different fields such as education ( Hardy et al. 2011 ) ,
sustainability ( Reeves et al. 2012 ) , and health ( Barankowski et al.

https://decide.ceh.ac.uk
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Figure 3. Model results of our mixed effect model testing two questions, stratified for each sampling priority status. Top, the effect of the dynamic map 
versus the control study regions with positive values indicating that the participants presented with the dynamic map increased their sampling in the 
given priority status relative to the control regions. Bottom, the difference between the dynamic map and the dynamic map with a leaderboard study 
regions, with positive values indicating the leaderboard promoted increased sampling relative to the dynamic map only treatment. Each point 
represents the effect size and the black line represents the 95% confidence interval. When the 95% confidence interval does not overlap zero, this can 
be interpreted as a significant effect of the experiment. 
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008 ) . However, to our knowledge, we are the first to experimen-
ally test the efficacy of behavioral nudges in a citizen science
nitiative. 
Conservation knowledge is a major motivation for many cit-

zen science participants ( Tiago et al. 2017 b, Maund et al. 2020 ,
n đelkovi ́c et al. 2022 ) , and therefore, we speculate that the partic-
pants’ willingness to adapt different sampling strategies probably
eflects motivations to contribute to conservation. But there is a
ide diversity of citizen science participants ( August et al. 2020 , Di
ecco et al. 2021 , West et al. 2021 ) , with different motivations for
articipating in citizen science projects ( Maund et al. 2020 ) that
an vary among different socioeconomic groups ( West et al. 2021 )
nd even among citizen science initiatives ( Agnello et al. 2022 ) . 
We found mixed support of the influence of the presence of
 leaderboard, focused on the most valuable observations, as op-
osed to the number of observations or most species observed, of-
en displayed in citizen science projects. The leaderboard tended
o increase sampling of high priority cells, but this was reversed
or medium priority cells. And the leaderboard also tended to
ncrease sampling of zero record cells as these were awarded
he most points. However, zero records and insufficient records
ells made up a relatively small percentage of cells, and so a
mall number of samples could result in a large statistical ef-
ect. Because the point value would be easier for medium ( 2
oints ) and high priority cells ( 3 points ) it is also possible partici-
ants were maximizing the number of points on the leaderboard
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appropriately. Directly asking the participants what they were
maximizing for and the extent to which they used the leaderboard
nudge will be important future work to understand how citizen
science participants contribute to adaptive sampling protocols.
On the basis of our familiarity with the region, we speculate that
some of these zero records or insufficient records areas were prob-
ably more difficult to access and had less suitable habitat for frogs
than the medium and high priority cells. FrogID had been run-
ning for 3 years ( Rowley et al. 2019 ) before our study and, because
most cells had already been sampled, the very small percentage
of cells that were not heavily targeted despite our nudges poten-
tially indicates particular attributes that restrict sampling. And
this is why we labelled these differently than high, medium, or low
priority cells. Had such an adaptive sampling protocol been initi-
ated at the start of a citizen science project, we suspect that there
would have been a stronger effect of sampling in cells with zero
or insufficient records for both experimental tests instead of just
the leaderboard test. Nevertheless, identifying regions that are ei-
ther inaccessible or unsuitable for target species for citizen sci-
ence participants can guide future professional surveys ( Tulloch
and Szabo 2012 , Tulloch et al. 2013 , Kays et al. 2021 ) . Ultimately,
we found uncertainty about the leaderboard’s influence, and the
potential nuance of using a leaderboard to encourage adaptive
sampling. This finding may reflect people’s intrinsic motivation
for contributing to a citizen science project, as opposed to exter-
nal validation of their contributions ( Feng et al. 2018 ) . In other
words, these results, although they were mixed, provide support
to the notion that self-efficacy ( Feng et al. 2018 ) or personal rea-
sons ( West et al. 2021 ) are less motivational in behavioral nudges
than intrinsic motivations. This finding supports other work that
surveyed environmental citizen scientists and that showed that
participant motivations were dominated by concern for the envi-
ronment and aligned with project goals ( Larson et al. 2020 , West
et al. 2021 ) . However, our study did not investigate how the results
( e.g., influence of the leaderboard ) changed among demographic
groups. Motivations for participation in citizen science can differ
among demographic and socioeconomic groups ( Pateman et al.
2021 , West et al. 2021 ) , and this remains an important avenue
of further research in fully quantifying the potential of adaptive
sampling protocols. 

An additional avenue for future research that our study high-
lights is how we conceptualize spatial sampling bias in citizen
science data. On analyzing our data, we realized that a simple
measure of spatial bias ( e.g., Moran’s I ) would not be satisfactory,
because our design implicitly introduced spatial bias, given that
species richness is not uniformly. Therefore, for our objective of
maximizing understanding of species richness, a simple reduc-
tion in spatial bias would not necessarily be informative. Because
this was the case, we developed an approach of using a null model
( see figure 4 ) that we believe may represent a potential future way
to assess changes in adaptive sampling by quantifying the change
in spatial clustering of observations. 

Citizen science participants’ motivations, activity levels, and
skill all vary among different projects and among taxa ( Bowler
et al. 2022 ) . Although our study was focused on frogs ( the FrogID
citizen science project ) , our results are widely applicable, given
the intrinsic interests of many participants who contribute to cit-
izen science ( Maund et al. 2020 ) . For example, although FrogID
collects data at points, we aggregated these data into grids, al-
lowing for some generalizability to other citizen science projects
that collect data through transects or area-based searches ( e.g.,
breeding bird surveys ) . During our 1-year study, there were COVID-
19 lockdowns, which were known to have altered citizen science
reporting ( e.g., Rose et al. 2020 , Sánchez-Clavijo et al. 2021 ) , po-
tentially limiting travel to distant high priority or medium prior- 
ity cells. Therefore, our results may be a conservative estimate of 
the potential for adaptive sampling in citizen science projects. We 
also note that not all sampling priority statuses from all study re-
gions followed the general trend; for example, the Central Coast 
study region had only 8% of samples from high priority cells. This
was because of one superuser who submitted numerous records 
from what was generally a medium priority cell throughout the 
study. If this superuser was removed from the analysis the re- 
sults were qualitatively ( supplemental figure S10 ) and quantita- 
tively ( supplemental figure S11 ) similar, but the overemphasis of 
medium priority sampling was indeed minimized. Such biases can 
be introduced by heavy users, which highlights the difficulties in 
working with observation data in an experimental setting. Never- 
theless, our statistical test and empirical interpretation shows a 
consistent trend when the experimental study regions are com- 
pared with the control regions. 

Biodiversity monitoring with citizen science data is not only 
about tracking diversity or species richness, as was the focus of 
our study. Citizen science data are increasingly broadly used, in- 
cluding species distribution modeling ( Milanesi et al. 2020 ) , dis- 
covery or rediscovery of rare and new species ( e.g., Vendetti et al.
2018 , Richart et al. 2019 ) , monitoring alien populations ( Dart 
et al. 2022 ) , and tracking population abundance changes ( Horns 
et al. 2018 , Gorta et al. 2019 ) . Although we focused on estimat-
ing species richness, our results suggest that our approach could 
also apply to improving information for these other applications.
Future adaptive sampling schemes could focus on understand- 
ing and capitalizing on the different motivations of citizen sci- 
ence participants to improve the effectiveness of citizen science 
initiatives. This could involve a focus on multiple types of objec- 
tives ( e.g., sampling undersampled regions, estimating population 
change, discovery of new or missing species ) , each supported by a
different map of sampling priority, because these will inherently 
have different optimal sampling requirements in space and time 
( Callaghan et al. 2019b ) , depending on the chosen goal or objec-
tive. The participants could then opt in to receive updates about 
their particular goal or objective. Such an approach might be 
particularly attractive to the superusers ( supplemental figure S8; 
Wood et al. 2011 , Rowley et al. 2019 ) , the relatively small percent-
age of users who contribute the majority of data. And whether and
to what extent different subsets of users adopt different nudges 
remains an important avenue for future research. 

Data to make informed decisions in an applied management 
sense ( e.g., ecological restoration and biodiversity conservation ) 
are increasingly important, and citizen science continues to in- 
crease and provide the potential for such data ( Peters et al. 2015 ,
Fraisl et al. 2020 , Bonney et al. 2021 ) . Our research has clear im-
plications for applied management at local to regional scales. Not 
only are these data valuable generally, but information can be 
maximized by having a clear management objective and either 
collecting data to make the most informed decision or tracking 
the effectiveness of local-scale management decisions. For exam- 
ple, practitioners who implement restoration aimed at increas- 
ing the local species pool could encourage sampling that is ded- 
icated to sampling the species diversity in the region. Further- 
more, our work helps to set the scene for future research that can
experimentally test and validate the robustness of incorporating 
adaptive sampling into citizen science design and implementa- 
tion. As an example, future work could look at how annotation or
the lack of it on maps can influence the likelihood of the partic-
ipants to adopt behavioral nudges. Similarly, different objectives 
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Figure 4. The difference in spatial bias measures as the mean square distance from all submissions in a study region compared with a null model of 
what spatial bias should look like had the dynamic maps been sampled. We generated pseudonull models for before by generating a dynamic map on 
the basis of our adaptive sampling protocol described in the text. 
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niversity of Florida user on 20 April 2023
 i.e., species distribution modelling, biodiversity change through
ime ) could be experimentally tested to see whether there are dif-
erent responses to behavioral nudges among different scientific
bjectives. 
People form the foundation of citizen science initiatives, and

nderstanding how they engage with nature and how their moti-
ations can be harnessed for improved biodiversity conservation
emains an important aspect of future research in the citizen sci-
nce field ( Maund et al. 2020 ) . We showed that citizen science par-
icipants are willing to change the focus of their observations with
ehavioral nudges, to help achieve a specific aim. The power of
daptive sampling lies in creating a data-based feedback loop with
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Figure 5. Examples of communications we received from the FrogID participants illustrating the potential and interest people have in helping 
contribute more meaningful citizen science sampling. 
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a specific aim or question and encouraging dynamic sampling to
understand that aim. Citizen science projects can be multifaceted
with evolving scientific objectives, goals, or questions, allowing the
participants to join the scientists on that journey. In addition to
our quantitative evidence, we have found much qualitative ev-
idence illustrating the excitement and willingness of citizen sci-
ence participants to be as helpful as possible for scientific goals of
the FrogID project ( see figure 5 ) . Leveraging this excitement of cit-
izen science participants, in a dynamic and adaptive framework,
is a meaningful and impactful way to increasingly advance our
collective knowledge of biodiversity. 
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